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To evaluate the sustainability of systems that draw power from electrical grids there is a need to rapidly
and accurately quantify pollutant emissions associated with power generation. Air emissions resulting
from electricity generation vary widely among power plants based on the types of fuel consumed, the
efficiency of the plant, and the type of pollution control systems in service. To address this need, methods
for estimating real-time air emissions from power generation based on locational marginal prices (LMPs)
have been developed. Based on LMPs the type of the marginal generating unit can be identified and pol-
lutant emissions are estimated. While conceptually demonstrated, this LMP approach has not been rig-
orously tested. The purpose of this paper is to (1) improve the LMP method for predicting pollutant
emissions and (2) evaluate the reliability of this technique through power system simulations. Previous
LMP methods were expanded to include marginal emissions estimates using an LMP Emissions Estima-
tion Method (LEEM). The accuracy of emission estimates was further improved by incorporating a prob-
ability distribution function that characterize generator fuel costs and a membership function (MF)
capable of accounting for multiple marginal generation units. Emission estimates were compared to
those predicted from power flow simulations. The improved LEEM was found to predict the marginal
generation type approximately 70% of the time based on typical system conditions (e.g. loads and fuel
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Nomenclature

Ci cost of generation for generator
Fi ($/MMBtu) fuel price of generat
CO2 carbon dioxide
efi emission factor for generator i
eGRID US EPA’s Emissions & Generati

Database
ERi emission rate of a specific pollu
fi degree of membership for gene
ISO independent system operator
lb pounds
ki2, ki1 and ki0 polynomial coefficients u

rate
LEEM LMP emission estimation metho
LME locational marginal emission
LMP locational marginal price
MATS Mercury and Air Toxics Standar
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costs) without the use of a MF. With the addition of a MF, the LEEM was found to provide emission esti-
mates with errors typically less than 25% for CO2, and less than 50% for SO2 and NOX. Overall, the LEEM
presented provides a means of incorporating pollutant emissions into demand side decisions.

� 2013 Elsevier Ltd. All rights reserved.
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MF membership function
MISO Midwest Independent System Operator
MMBtu million metric British thermal units
MW h megawatt hour
Nbus total bus number
NGi net generation at plant i
NOX nitrogen oxides
pi power output (MW) of generator i
PDF probability distribution function
RFCM Reliability First Corporation Michigan
RTO transmission organizations
SO2 sulfur dioxide
l mean
r standard deviation
Pi active power output of generator i
Hi average heat rate of a plant (MMBtu/MW h)
1. Introduction

Electric power generation is a major source of air pollution. In
2010, power plants were responsible for 64% of SO2 emissions,
16% of NOX emissions, 40% of CO2 emissions, and 68% of mercury
air emissions in the US [1]. In the US power generation and energy
demand are coordinated through regional energy markets man-
aged by regional transmission organizations (RTOs) and indepen-
dent system operators (ISOs). Because each ISO functions
differently the amount of information that is made available to
the public varies. Annual air pollutant loads from electrical gener-
ation are well documented for all regions due to reporting require-
ments by the US Environmental Protection Agency (EPA) and
Energy Information Administration (EIA). However, real-time and
spatially accurate information describing emissions is not easily
obtained. This lack of transparency hinders the ability to make con-
trol decisions based on the amount of emissions that would be
generated at any time. To quantify changes in emissions due to
real-time demand controls, a model has been developed to esti-
mate changes in pollutant emissions based on locational marginal
prices (LMPs) [2]. While the original method provided a theoretical
construct for estimating pollutant loads that could be used to drive
demand-side decisions it (1) lacked regional specificity regarding
pollutant emission factors, (2) was unable to account for more than
one marginal unit, and (3) has yet to be validated. The purpose of
this paper is to enhance the LMP Emission Estimation Method
(LEEM) by addressing the first two short comings and verify its
effectiveness.

LMPs are the wholesale electricity prices used by most RTOs
and ISOs to efficiently manage the electric transmission system
[3]. LMPs are locational, because they are published for thousands
of node locations, and marginal because they represent the price
for the next incremental unit of load at a particular time and place
[4,5]. In other words, LMPs represent the cost to generate and de-
liver the next MWh of electricity [6] and take into account three
things: the cost of generation, transmission constraints, and sys-
tem losses [2]. If system losses are negligible, then LMP is a func-
tion of system constraints and the cost of generation. A
constraint occurs when a physical limitation(s) of the transmission
network is reached, making the transmission of electricity from the
cheapest source to the demand inefficient or impossible. In these
locations differences in LMPs will be observed across the line con-
straint and, as a result, different marginal units can be observed
across the line constraint.

LEEM utilizes the LMP to identify the pollutant emission profile
(i.e. emission factors) of a marginal generator, based on fuel type,
for a given location and time [2]. The use of LMPs to estimate air
emissions is powerful, because near real-time LMPs are publically
available for many locations [7]. If real-time estimates for air emis-
sions were made widely available, it may be possible to shift de-
mand (spatially and temporally) to reduce air emissions due to
power generation. This is particularly true for large water trans-
mission systems where energy demand can be shifted slightly
without negatively impacting system performance.

Central to the LEEM is the ability to identify the type of mar-
ginal generation unit based on the LMP. The marginal unit is the
generator capable of supplying that next unit of energy at the
cheapest rate. In other words, it is the most expensive generator
that is currently dispatched, and therefore, will be the first unit
to be incrementally adjusted due to changes in system demands
[8]. Since the marginal generator will adjust to changes in demand,
each incremental change in electrical use will result in an associ-
ated change in pollutant emissions.

Electricity markets in the US encourage utility participants to
place generation bid prices based on generation costs. The cost of
generation for each power plant can be reasonably approximated
using publicly available data [9,10] and calculated as the price of
fuel multiplied by the heat rate of that plant. Fuel prices are a func-
tion of the type of fuel used. Since the cost of generation is known
for many power plants, LMP ranges associated with each fuel type
can be determined for similar plants. Additionally, plants with the
same primary fuel type are found to have similar air emission pro-
files. After an LMP is used to estimate the fuel type of the marginal
unit, air emissions associated with that type of fuel can be esti-
mated. Various public data sources can be used to estimate emis-



Fig. 1. Normal distribution curves of generation cost for plants in eGRID subregion
RFCM, 2009 with specific fuel types.
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sions from each marginal fuel type [10–13]. This becomes the esti-
mated locational marginal emission and can be used to predict
changes in real-time emissions in response to marginal changes
in demand.

This paper focuses on improving the LEEM method developed
by Carter et al. [2] and evaluating its ability to accurately predict
changes in pollutant emissions. Estimations of both generation
cost and air emissions are enhanced by incorporating power plant
specific data, rather than national average fuel costs and emission
rates. The accuracy of the improved model is evaluated against the
type of marginal generator and emission estimates predicted by an
IEEE model power system. Results from this simulation provide in-
sight into the accuracy the revised method as well as suggestion
for future applications.

2. Methodology

For clarity, the earlier version of LEEM created by Carter et al.
[2] is identified as LEEM 1.0, while the revised method presented
in this paper is described as LEEM 2.0.

2.1. Improvements to LEEM

For LEEM 2.0 local, rather than national, fuel prices and emission
rates have been employed. As with previous model development,
the footprint of the Midwest Independent System Operator (MISO)
has been used as the focus region. Despite this development focus,
LEEM could be applied to any other LMP-based electricity market.

2.1.1. Classifying generator type
LEEM 1.0 used statewide and nationwide average fuel price re-

ports for coal, natural gas, and fuel oil [14–16] to calculate plant
generation costs and develop LMP fuel type price ranges. A refine-
ment implemented in LEEM 2.0 incorporates unit-specific reported
monthly fuel purchases for each plant, including the quantity of
fuel consumed, price paid for fuel, and efficiency (heat rate) of
the plant [9,17]. Local regions are defined in LEEM 2.0 by the US
EPA’s Emissions & Generation Resource Integrated Database
(eGRID) subregions [10]. The US EPA identified eGRID subregions
using power control areas and North American Electric Reliability
Corporation (NERC) regions as a guide [18]. The RFCM (Reliability
First Corporation Michigan) area, which covers most of Michigan’s
lower-peninsula, is used as the subregion for this pilot study.

The plant generation cost (Ci), in dollars per megawatt-hour of
electricity produced, was computed as the cost of fuel per heat
consumed (Fi) multiplied by the plant’s heat rate (Hi), as shown in

Ci ¼ Fi � Hi ð1Þ

The EIA-923 form reports the primary fuel type such as natural
gas, coal, or petroleum for each plant. These three major fuel types
have also been used for LEEM 2.0 (Table 1). In many cases, a more
specific fuel type is also reported, such as bituminous or sub-bitu-
minous coal. It was impractical to report each of these specific fuel
Table 1
Fuel types sorted into categories.

Specific fuel types (LEEM 1.0) Broader category (LEEM 2.0)

Coal-lignite Coal
Coal-bituminous
Coal-sub-bituminous
Petroleum coke

Natural gas Natural gas

Distilled fuel oil Oil
Residual fuel oil
types separately, as was done for LEEM 1.0. First, certain fuel types
often fall into the same range of generation costs, making it very
unlikely that the marginal fuel type and prime mover could be
determined based on LMP alone. For example, it is nearly impossi-
ble to differentiate bituminous or sub-bituminous coal-fired power
plants based on generation cost (Fig. 1). Additionally, the ultimate
goal of LEEM is to estimate marginal emissions. Though generators
at the same power plant may consume different fuel types, the
source of emission data utilized for LEEM 2.0 (eGRID) lists power
plants by their primary fuel type. As a result, fuel types were cate-
gorized as coal, natural gas, or oil.

In LEEM 1.0, LMP price ranges for marginal fuel types were de-
fined crudely by choosing the median of the generation costs for a
fuel type, and setting that price as the dividing line between cate-
gories. The logic for this approach was that the majority of gener-
ators within a specific class would be economically viable beyond
this median price point. In LEEM 2.0, an alternative approach was
employed, one that utilized probability density curves of plant fuel
prices to more accurately identify LMP price ranges. Normal prob-
ability density curves were created for each fuel type based on
2009 data for the eGRID subregion RFCM. The price associated with
the intersection of the curves for two fuel types reflects the break-
point between one marginal fuel type and another (Fig. 2). Using
these break-points to define the price ranges, LEEM 2.0 associates
each LMP with marginal fuel type as described in
Fig. 2. Normal distribution curves of generation cost for plants in eGRID subregion
RFCM, 2009 with consolidated fuel types.



Fig. 3. Local (eGRID subregion RFCM) and national pollutant emissions rates 2009
[10].

M.M. Rogers et al. / Applied Energy 111 (2013) 812–820 815
primary fuel¼
Coal 0< LMPi633:28ð$=MW hÞ
Gas 33:28< LMPi6112:55ð$=MW hÞ
Oil 112:55< LMPið$=MW hÞ

8><
>: i¼1; . . . ;Nbus

ð2Þ
Generation cost ranges for consolidated fuel types in the RFCM

subregion are presented in Fig. 2. The high standard deviation of
the generation cost, especially for natural gas and oil, results in a
significant amount of overlap in cost associated with each fuel
type. This is expected to cause higher error in estimating the mar-
ginal generator type, as opposed to a scenario with lower standard
deviation of generation costs.

2.1.2. Marginal emissions estimation
Unlike LEEM 1.0, which utilized national average emission rates,

LEEM 2.0 utilized average regional emission rates based on emis-
sions rates of specific power plants reported in the latest version
of eGRID [10]. This data was pared down to the local level based
on eGRID subregions. Information regarding power plants in each
subregion was sorted according to the primary fuel type. Emission
rates at each plant for NOX, SO2, and CO2 equivalents are reported
in pounds pollutant per megawatt hour of electricity generated.
Carbon dioxide equivalents are calculated based on the combined
global warming potential of CO2, CH4, and N2O [19]. Average emis-
sion rates and standard deviations were calculated for each fuel
type and pollutant based on all plants in the region. The average
emission rate (lER) was weighted based on electricity production
at each plant:

lER ¼
P
ðERi � NGiÞP
ðNGiÞ

ð3Þ

where ERi is the emission rate of a specific pollutant from plant i
and NG is the net generation at plant i.

A common difficulty in estimating emission rates is that many
plants (especially oil-powered plants) have negative net annual
generation, meaning that the plant consumed more energy than
it produced. In order to deal with impossible negative emission
rates, negative net generation was excluded from calculations. It
was verified that this practice of excluding negative generation
agreed with the EPA’s calculations (less than 1% difference for all
three pollutants) by comparing the subregion weighted average
with eGRID’s reported regional rate. The results for the eGRID sub-
region RFCM, which covers lower Michigan, are presented in Fig. 3.

Calculated local emission rates (Table 2) were compared to
those reported by eGRID (Fig. 3). Calculated and reported pollutant
emissions for the RFCM subregions were found to be nearly iden-
tical but these values were found to vary significantly from eGRID
national average [10]. This highlights the importance of using re-
gion-specific emissions rates to predict spatially accurate pollutant
emissions.

2.1.3. Membership function
As shown in Fig. 2, significant overlap is observed in the prices

of fuels used to identify the marginal unit type. Moreover, in real-
ity, it is possible to have multiple marginal units at any given time.
Table 2
Local emission rates by plant fuel generation category, RFCM year 2009 data.

Pollutant Coal Na

l (lb/MWh) r l (

NOX 2.31 0.74 0.4
SO2 8.27 2.01 0.0
CO2 equivalents 2159 216 90

Source: eGRID [10].
These factors decrease the accuracy of emission estimates obtained
by the LEEM, which assumes a single marginal unit. Therefore, the
use of a membership function (MF) was incorporated into the mod-
el to address the possibility of emissions from multiple simulta-
neous marginal generators. The MF concept is derived from
Fuzzy Logic and can increase the likelihood of characterizing the
fuel mixture of marginal units. A MF defines how each input data
point is mapped to a membership value (degree of membership)
between 0 and 1. In our case, the inputs are LMP values and the
outputs are the membership values for each fuel type: coal, natural
gas and petroleum. Therefore, three membership functions need to
be defined, one for each fuel type. To achieve this objective a sym-
metric Gaussian membership function was employed:

fiðxÞ ¼ e
�ðx�li Þ

2

2r2
i ð4Þ

where x is the input LMP value; fi is the degree of membership of ith
category (i.e., coal, natural gas or petroleum), li and r2

i are the
mean and the variance of the ith category. Details of the MF param-
eters are listed in Table 5 and the corresponding membership distri-
bution curves are shown in Fig. 4.

The fuel mixture of marginal units was then calculated as

percenti ¼
fiP

fi
ð5Þ

where percenti is the percentage of the ith fuel type generator (coal,
natural gas, and oil) at the margin. The overall marginal emission
rates can be determined based on the above estimated marginal
fuel mixture percentage.

efj ¼
X

percenti � efij ð6Þ

where efi is the marginal emission factor of emission j and j = CO2,
SO2; NOX. efij is the emission factor of emission j for generator i
(coal, natural gas or oil).
tural Gas Fuel Oil

lb/MWh) r l (lb/MWh) r

9 0.75 24.4 8.1
4 0.35 2.01 0.52
3 413 1911 349



Fig. 4. Membership value distribution of LMP values associated with each
generation type.

Table 3
PDF parameters of fuel prices ($/MMBtu) used in simulation studies.

Parameter Coal Natural gas Petroleum

l 2.05 6.3 9.05
RFCM (% of l)a 0.40 (20%) 1.68 (27%) 4.27 (47%)
r1 (% of l) 0.1025 (5%) 0.315 (5%) 0.4525 (5%)
r2 (% of l) 0.6150 (30%) 1.890 (30%) 2.0715 (30%)

a RFCM actual values. Not used in simulation, only presented here as a point of
reference.
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2.2. Validation of LEEM 2.0 – power system simulation

The LMP-based approach for estimating marginal pollutant
emissions lies in the assumption that a change in load on a specific
node/bus must be balanced by a change in generation by the mar-
ginal generator. Due to the competitive bidding process the LMP at
this node directly controls which type of generator will be im-
pacted by this change in demand. Based on this relationship, emis-
sions with respect to the change in load can then be estimated
using the average emission rate for the generator class. Verifying
the accuracy of LEEM predicted marginal generator types is prob-
lematic because the actual marginal generator is not publicly avail-
able. The identity of marginal generators is kept confidential to
inhibit price gaming in energy markets. As a result, there is no
way to directly determine whether or not the LMP method is valid.

In the absence of a direct evaluation of real data from an ISO
system, a series of simulation studies utilizing a standard IEEE test
system were performed to evaluate the accuracy of LEEM 2.0. First,
the ability of LEEM to identify the marginal unit using the LMP ap-
proach was evaluated. When the marginal unit predicted by LEEM
was the same as the dominant marginal unit identified during sim-
ulation studies on the IEEE test system this approach was consid-
ered to be validated. Second, the ability of LEEM to estimate
emission rates was compared against results obtained on the test
system using stochastic simulation studies that incorporate varia-
tions in fuel prices, system operation conditions and emission fac-
tors. Finally, a third set of simulations were conducted to evaluate
the incorporation of a MF into LEEM 2.0.

The simulation studies utilized standard stochastic cost and
emission models [20]. Three load levels were investigated. For each
load level, 200 sampling cases (realizations) were generated. In
each case, a 1 MW load increase is applied for every load node
and corresponding marginal emissions were calculated.
Table 4
Emission factors PDF parameters (lbs/MMBtu).

Pollutant Parameter Co

CO2 equivalents l 21
r (5% of l) 10

SO2 l 0.
r (30% of l) 0.

NOX l 0.
r (30% of l) 0.
Parameters for the stochastic models were based on fuel pricing
and emissions observed in the RFCM subregion (Tables 2 and 3).

2.2.1. Test system
The simulation studies were conducted on a model systems

based on the standard 73-bus IEEE Reliability Test System (RTS)
[21]. The IEEE RTS system represents a relatively large and complex
power system, as it has 73 buses (51 load buses), 99 generators,
120 branches, 16 transformers, and a total of 8550 MW load and
10,215 MW generation capacities. The test system is similar in size
to the eGRID subregion RFCM, which the fuel and emission sto-
chastic model parameters were based. The system includes 120
transmission lines at two voltage levels: 138 kV and 230 kV. The
generation capacity consists of 900 MW hydro-electric, 2400 MW
nuclear, 3822 MW coal, 2853 MW petroleum, and 240 MW petro-
leum combustion turbine generating units. To mimic the study
area for which LEEM was based (MISO), the costs and emissions
factors for hydro-electric and nuclear were set to zero. As a result,
these generators provided capacity but were always providing base
load during the analyses performed. In order to replicate the wide
use of natural gas units in the RFCM region, 1080 MW petroleum
was replaced with 1080 MW natural gas in the numerical simula-
tion study presented in this paper. The test system was evaluated
at 60%, 80%, and 100% of the system load.

2.2.2. Cost model
For a fossil fuel-fired generation unit, the heat rate was modeled

as a quadratic function of its active power output [22]. The gener-
ation cost of the unit was expressed as

CiðpiÞ ¼ Fi ki2p2
i þ ki1pi þ ki0

� �
ð7Þ

where Ci ($/MW h) denotes the generation cost of generator i; pi

(MW) was the active power output of generator i; Fi ($/MMBtu) de-
noted the fuel price of generator i; ki2, ki1 and ki0 were the polyno-
mial coefficients of the heat rate function and were calculated based
on the heat rate curve of the generator (see Table 9 in Ref. [21]).

2.2.3. Emissions model
The emission rate of a generator was modeled as proportional

to the amount of fuel consumed by the unit per MW h generation
[23] as

EijðpiÞ ¼ efij ki2p2
i þ ki1pi þ ki0

� �
ð8Þ
al Natural gas Petroleum

0 118 162
.5 5.9 8.1

8 0.005 0.17
24 0.0015 0.051

22 0.06 2.1
066 0.018 0.63



Fig. 5. Accuracy of LEEM in identification of the primary marginal fuel type for the
two the fuel price distributions evaluated (a) r1 = 5% and (b) r2 = 30%.
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where Eij (lbs/MW h) was emission rate j of generator i; efij (lbs/
MMBtu) was the corresponding emission factor, which was based
on the actual emission rates observed in the eGRID RFCM subregion
(Table 4). Typical curves produced from Eq. (8) are presented in the
Supplementary data.

2.2.4. Stochastic models
Fuel prices and the emission factors of generators often vary

within a characteristic range. In order to simulate reality, stochas-
tic models were used to mimic diverse fuel prices, air emissions
and other system conditions. The normal distribution was used
to model the stochastic distribution of fuel prices (Fi in Eq. (7)).
The probability density function (PDF) of a normal distribution
can be described by

f ðxÞ ¼ 1
r
ffiffiffiffiffiffiffi
2p
p exp �ðx� lÞ2

2r2

" #
ðx > 0Þ ð9Þ

where l and r are the mean and standard deviation of random var-
iable x (fuel prices). Based on the data obtained from the US EIA and
EPA regarding power plants located within the eGRID subregion
RFCM, the PDF parameters (i.e., l and r) of fuel prices for different
power plants (i.e., coal, natural gas and petroleum) were obtained
and are described in Table 3. Two different standard deviations in
fuel prices (r1 and r2, Table 3) were employed during simulation
studies in order to investigate the accuracy of LEEM under scenarios
with different variations in fuel prices.

The normal distribution (Eq. (9)) was also used to model the
stochastic distribution of emission factors (efij in Eq. (8)). The PDF
parameters of emission factors listed in Table 4 were used during
model simulations. The average emission factors in lbs/MMBtu of
fuel consumed were calculated from eGRID data for the RFCM sub-
region. For the simulation study, standard deviations of 5%, 30%,
and 30% of the mean were used for CO2, SO2, and NOX emission
rates, respectively (Table 4).

The uniform distribution is used to simulate the on/off state of
components in the simulation power system. The PDF of a uniform
distribution is

f ðxÞ ¼
1

b�a ; a < x < b

0; otherwise

(
ð10Þ

where a = 0 and b = 1 for the simulation studies carried out in this
paper. To determine the state of transmission line l, for example,
a random value is first generated according to the standard uniform
distribution on the open interval (0,1). Then, the line state can be
determined by comparing the random value with the line availabil-
ity; if the generated random value is greater than the availability of
line l, the line is out of service, otherwise it is in service. Data
describing the availability of the transmission lines in the IEEE sim-
ulation system can be found elsewhere [22].

A total of three system load levels (60%, 80%, and 100% of the
base load) were investigated in the simulation studies. The load
at a specific bus was allowed to fluctuate within an appropriate
range while maintaining a constant load level for the system. The
normal distribution was used to model the load variations at dif-
ferent buses. In other words, the load at a specific node was the
product of the base load, a load level coefficient (0.6, 0.8, and
1.0) and a random value generated based on
Table 5
Membership function parameters.

Parameter ($/MW h) Coal Gas Petroleum

l 21.86 70.69 112.39
r (30% of l) 6.56 21.21 33.72
Fig. 6. Percent error in emission estimates from LEEM 2.0 at each node in the IEEE
RTS system with (a) 5% deviation and (b) 30% deviation in fuel prices; 5%, 30% and
30% deviations in CO2, SO2 and NOX, respectively.
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fiðxÞ ¼
1

ri

ffiffiffiffiffiffiffi
2p
p exp �ðx� liÞ

2

2r2
i

" #
ð�1 < x < þ1; i

¼ 2;3; . . . ;NbusÞ ð11Þ

where li and ri are the mean and the standard deviation of load at
bus i. Nbus is the total bus number in the system, i.e. Nbus = 73. Bus 1
is taken as the reference bus in the simulation system.

3. Simulation results and discussion

3.1. Marginal unit type

Based on the stochastic modeling using fuel prices described in
Table 3, the LEEM successfully identified the correct type of mar-
ginal unit at the majority of nodes (Fig. 5), even without incorpo-
rating a MF. With a 5% standard deviation (r1) in fuel prices,
LEEM had an accuracy rate of 80% (on average) in identified the pri-
mary fuel type of the marginal unit, in response to changes in load
(Fig. 5a). When the fuel prices had a 30% standard deviation (r2)
Fig. 7. Marginal CO2 , SO2, and NOX emissions under different load condition
the model maintained an accuracy of about 70% in identifying
the primary fuel type for almost all the load nodes in the system
(Fig. 5b). Based on this analysis, it can be concluded that LEEM cor-
rectly identifies the primary marginal fuel type a majority of the
time for a variety of load conditions and fuel prices.
3.2. Reliability of emission estimates

Based on the stochastic analysis, errors in estimating pollutant
emissions using the LEEM ranged from 10% to 150% (Fig. 6). LEEM
emission estimates for CO2 had errors of less than 25% most nodes,
regardless of differences in the distribution of fuel prices. The
greatest amount of error in estimating pollutant emissions for
CO2, as with all pollutants studied, was observed at node 14. Errors
at this node were approximately 100% for CO2 and SO2 estimates,
and over 150% in NOX estimates. Estimates of CO2 emissions re-
lated to nodes 1–19 were generally found to be greater when fuel
prices had a smaller deviation in price (Fig. 6a) than when they had
a larger deviation in price (Fig. 6a). This was generally opposite the
s at bus 14 (left panel; a, c, and e) and bus 20 (right panel; b, d, and f).
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trend that was observed for other pollutants. For a majority of load
buses, NOX emission estimates were generally less than 60%,
regardless of deviations in fuel prices. Again, node 14 was found
to have the greatest amount of error in estimating NOX emissions.
Sulfur dioxide was generally was found to have the greatest
amount of error associated with pollutant emission estimates.
For SO2 over 65% of load buses had errors greater than 50%. When
fuel prices varied by 30% (Fig. 5b), most of the buses were found to
have emission estimate errors around 80%.

The accuracy of pollutant emission estimates was found to vary
by pollutant, node and the variability of fuel prices. Greater devia-
tions in fuel prices (i.e. standard deviation 30%, rather than 5%) did
not have an equal impact on all pollutants. This may be partially
attributed to the variability of CO2, SO2 and NOX emission rates
(5%, 30% and 30%) used during the simulation studies. These devi-
ations were present even when there was little variability in fuel
prices and fuel price ranges did not overlap, which would result
in a 100% correct identification of generation types.

Fig. 7a, c, and e shows the detailed marginal emission data for
all the 600 simulation studies (200 points for load levels of 60%,
80% and 100%) at bus 14. Fig. 7 was developed assuming a fixed
30% deviation in fuel prices and 5%, 30% and 30% deviations in
CO2, SO2 and NOX emission rates, respectively. The LMP reported
for bus 14 by the IEEE model system had a large range of LMP val-
ues, 20–200 $/MW h. These results suggest node 14 may be located
in a constrained area when the system load level increases. A con-
strained condition can cause large variations in LMP prices, which
may lead to large errors in emission estimation. For the purpose of
comparison, the emission data for bus 20, which is a typical bus
with a smaller emission rate estimation error, are given in
Fig. 7b, d, and f. Note a narrower range of LMP prices were ob-
served at bus 20 relative bus 14 and, as a result, more accurate pol-
lutant estimates were observed at this bus (Fig. 6). Additionally,
Fig. 8. Percentage errors in estimating emissions at different nodes using the LEEM
with MF method with (a) 5% deviation and (b) 30% deviation in fuel prices; 5%, 30%
and 30% deviations in CO2, SO2 and NOX, respectively.
these estimates were found to be generally less susceptible to vari-
ations fuel prices.

Another reason for large emission estimation errors associated
with LEEM is that there can be multiple marginal generators that
respond to a 1 MW increase in load. For example, to accommodate
a 1 MW load change, there can be 0.5 MW supplied by a coal-fired
generator(s) and the remaining 0.5 MW from natural gas fired
unit(s) if power loss is neglected. Moreover, there can be a reduc-
tion in the output of some generator(s) while the other marginal
units will supply even more. For instance, for a 1 MW load increase
under different conditions, there may be a 2 MW reduction in coal-
fired marginal units while a 3 MW increase in natural gas fired
generator(s). The reduction (or negative increase) in certain units
can cause negative values of marginal emissions, as observed in
Fig. 7, particularly for bus 14.
3.3. Membership function method

Incorporating a membership function into the LEEM signifi-
cantly reduced the emission estimation errors for CO2 and SO2

(Fig. 8). For most of the load buses, the errors in estimating CO2

emissions have been reduced to around 20% while the errors in
estimating SO2 and NOX have been reduced to less than 40% for a
majority of nodes. However, as shown in Fig. 8, significant errors
continue to be observed at bus 14. The use of a MF becomes less
effective at 5% deviations in fuel prices. This is consistent with
the results observed without a MF where the ability of the LEEM
to correctly identifying the fuel type improves with smaller varia-
tions in fuel prices (Fig. 5a). Nevertheless, the LEEM with a MF pro-
vides emission estimates with errors less than 50% for the majority
of nodes, even with the high variations in fuel prices that can be
observed in the RFCM (Table 3).
4. Conclusions

The LMP Emissions Estimation Method, LEEM, was improved to
include local emission rates and fuel prices based on historic elec-
tric power plant data. The power system simulation study indi-
cates that LEEM can successfully determine the marginal
generator unit type 70% of the time with 30% deviation in fuel
prices and 80% of the time with 5% deviation in fuel prices. Without
including a MF in LEEM, marginal emission estimates have errors
less than 25% for CO2, and higher errors for NOX and SO2. The inclu-
sion of a MF into LEEM improves the models ability to predict pol-
lutant emissions. This results in less than about 20% error for CO2

estimates and generally less than 50% error for NOX and SO2 esti-
mates. This improvement in predictive ability virtually eliminates
problems associated with deviations in fuel prices.

It should be noted that LEEM utilizes differences in fuel prices
that dictate the type of generation unit. If the current price struc-
ture changes significantly and the costs ranges for different gener-
ation/fuel types overlap then it is unlikely the method could
provide accurate estimates based on LMPs. In the future, an alter-
native method for identifying locational marginal emissions
(LMEs) may be necessary due to the lack of a clear difference in
generation costs between units with distinct emission factors. In
addition to changes in fuel prices, advances in emission control
equipment may also magnify errors associated with grouping gen-
erators based on fuel type alone.

LEEM appears to be effective at providing general estimates that
could be used to rapidly evaluate demand side energy decisions
based on pollutant emissions. If these estimates could be used to
shift loads over sustained periods of time, pollutant emissions
are likely to be reduced. Additionally, LEEM could be used to effec-
tively evaluating energy policies. For example, the US EPA released
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Mercury and Air Toxics Standards (MATS) in 2011. These regula-
tions define new limits for mercury, acid gases, and non-mercury
metallic toxic pollutants for coal and oil-fired power plants [24].
Though these rules are still undergoing public comment and revi-
sion, power generators must be ready to comply when they are
implemented. A potential approach to reducing MATS is to influ-
ence demand-side decisions. Previously this approach was consid-
ered infeasible because no method for rapidly estimating pollutant
emissions was available. It may be possible to achieve these reduc-
tions without reducing power demand by shifting loads to times
when the pollutant emission profile is different. The LEEM provides
the rapid assessment of pollutant emissions that will enable de-
mand-side decisions and optimizations to be made to reduce pol-
lutant emissions.
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